
RSE2107A - Lecture 6
ROS Navigation Part 2







Global Planners
01

Agenda

Local Planners
02



Global Planners



Global Planners

● The aim of a global planner is to find the shortest/most efficient and 

collision-free path to a given point from a start point.

● In the context of robotic autonomous navigation, this path is the path 

to a navigation goal that costs the least according to the global 

costmap.



Global Planners

● In the ROS navigation stack, all global planners are “plugins” for the 

move_base node, that share the same programming interface as the 

nav_core::BaseGlobalPlanner.

● Currently there are 3 such planner plugins:

○ global_planner < (Used by limo)

○ navfn

○ carrot_planner

http://wiki.ros.org/nav_core#BaseGlobalPlanner


How does global_planner work?

● global_planner mainly use 2 algorithms commonly used to find paths 

1. Dijkstra’s

2. A* (A-star)

● We will take a closer look into these 2 algorithms from 2 standpoints

○ How they work in (graph) theory?

○ How they are applied in the ROS navigation stack? 

https://en.wikipedia.org/wiki/Graph_theory#:~:text=In%20mathematics%2C%20graph%20theory%20is,also%20called%20links%20or%20lines).


In Graph theory



Graph Theory?!

● In mathematics, graph theory is the study of graphs, which are 

mathematical structures used to model pairwise relations between 

objects.

● A graph in this context is made up of vertices (also called nodes or 

points) which are connected by edges (also called links or lines)



Graphs in path finding

● In any path finding problem, the multitude of choices in 

traversing through a place/map can be challenging to 

visualize and analyse.

● To overcome this problem, the map can be simplified to a 

(weighted) graph where

○ Vertices/Nodes - Any place we can travel to

○ Links/Edges - Any possible paths between pairs of 

places

○ Numbers/Weights - Cost/Effort to travel along that path

E

B

C

D

61

1

5 5

2

2



Dijkstra’s 
Algorithm



Dijkstra’s algorithm

● Published by computer scientist Edsger W.Dijkstra in 1959

● Used to find the shortest paths from a given start point to all other vertices/nodes

in a given map or graph.

● This process results in a shortest path tree or table (spt) describing the shortest 

path to every other node from a specific starting node.



How does it work?

● Two lists are created, one to store the visited vertices and another to 

store the unvisited vertices.

● Set distance for the start vertex to 0.

● Set the distance of all the other vertices from start vertex to infinity.

● Visit the unvisited vertex with the smallest known distance from start.

● Let’s call this unvisited vertex, current vertex.



How does it work?

● For the current vertex, calculate the distance of each neighbouring 

vertex.

● If the calculated distance of a vertex is lesser than the known 

distance, update the shortest distance.

● Add the current vertex to list of visited vertices and repeat till all the 

vertices are visited.



Example

A

E

B

C

D

Vertex Shortest 

distance 

from A

Previous 

vertex

A 0

B ∞

C ∞

D ∞

E ∞

6

1

1

5

5

2
2

Visited = [] Unvisited = [A, B, C, D, E]



Example

A

E

B

C

D

Vertex Shortest 

distance 

from A

Previous 

vertex

A 0

B 6 A

C ∞

D ∞

E 1 A

6

1

1

5

5

2
2

Visited = [A] Unvisited = [B, C, D, E]



Example

A

E

B

C

D

Vertex Shortest 

distance 

from A

Previous 

vertex

A 0

B 3 E

C ∞

D 2 E

E 1 A

6

1

1

5

5

2
2

Visited = [A, E] Unvisited = [B, C, D]



Example

A

E

B

C

D

Vertex Shortest 

distance 

from A

Previous 

vertex

A 0

B 3 E

C 7 D

D 2 E

E 1 A

6

1

1

5

5

2
2

Visited = [A, E, D] Unvisited = [B, C]

B = 1 + 1 + 2 = 4



Example

A

E

B

C

D

Vertex Shortest 

distance 

from A

Previous 

vertex

A 0

B 3 E

C 7 D

D 2 E

E 1 A

6

1

1

5

5

2
2

Visited = [A, E, D, B] Unvisited = [C]

C = 3 + 5 = 8



Example

A

E

B

C

D

Vertex Shortest 

distance 

from A

Previous 

vertex

A 0

B 3 E

C 7 D

D 2 E

E 1 A

6

1

1

5

5

2
2

Visited = [A, E, D, B, C] Unvisited = [ ]



Example

Vertex Shortest 

distance 

from A

Previous 

vertex

A 0

B 3 E

C 7 D

D 2 E

E 1 A

A

E

BD

C

1

1

5

2

Tree Table



A* Algorithm



A* algorithm

• Published first in 1968 by Stanford Research Institute.

• Extension of Dijkstra’s algorithm. Achieves better performance by 

using heuristics to find the shortest path.

• Unlike Dijkstra’s algorithm, the A* algorithm only finds the shortest 

path from a specified source to a specified goal.

• Necessary trade-off for using a specific goal-directed heuristic.



A* algorithm

• The algorithm starts from the pre-defined start node and calculates 

the cost for all its surrounding nodes while searching for the shortest 

path.

• G cost [G(x)]: Cost to return to start node

• H cost [H(x)]: Cost to reach end node

• H cost is estimated using heuristics

• Eg, Manhattan, Euclidean

• F cost [F(x)]: Total cost = H(x) + G(x)



Heuristics

• Denoted by h(x), where n represents the node

• The value of h(x) would ideally be equal to the cost of reaching the 

destination. However, this is not possible as we do not know the path 

to the destination.

• For a heuristic to be admissible, the estimated cost must be lower 

than or equal to the actual cost.

• For a value of h(x) that is greater than the actual cost, it will lead to a 

faster but less accurate search.



How does it work?

• Given a map with a starting node, target node and obstacles 

according to the cost value F(x). At each step, the algorithm picks the 

node with the lowest F(x) and calculates the cost of surrounding 

nodes.

• When 2 nodes have the same cost value, the algorithm picks the 

node with the lower H(x) cost.

• Repeat till end node is reached.



ObstacleStart

0 52

Obstacle

End

52 0

• H(x): Euclidean

• H(x) = sqrt (

(current_node.x - goal_node.x)2 + 

(current_node.y - goal_node.y)2)

• Each grid is 10 x 10

• Diagonal is ~14

F(x)

G H

Example



Obstacle58

10 48

Start

0 52

52

14 38

52

10 42

Obstacle

End

52 0

• H(x): Euclidean

• H(x) = sqrt ( 

(current_node.x - goal_node.x)2 + 

(current_node.y - goal_node.y)2)

• Each grid is 10 x 10

• Diagonal is ~14

F(x)

G H
A1

Example



Obstacle58

10 48

Start

0 52

52

14 38

52

10 42

52

24 28

58

20 38

Obstacle

52

28 24

End

52 0

• H(x): Euclidean

• H(x) = sqrt ( 

(current_node.x - goal_node.x)2 + 

(current_node.y - goal_node.y)2)

• Each grid is 10 x 10

• Diagonal is ~14

F(x)

G H
A1

B1

Example



58

38 20

Obstacle58

10 48

Start

0 52

52

14 38

52

10 42

52

24 28

52

42 10

58

20 38

Obstacle

58

34 24

52

28 24

End

52 0

52

38 14• H(x): Euclidean

• H(x) = sqrt ( 

(current_node.x - goal_node.x)2 + 

(current_node.y - goal_node.y)2)

• Each grid is 10 x 10

• Diagonal is ~14

F(x)

G H

Example



58

38 20

Obstacle58

10 48

Start

0 52

52

14 38

52

10 42

52

24 28

52

42 10

58

20 38

Obstacle

58

34 24

52

28 24

End

52 0

52

38 14• H(x): Euclidean

• H(x) = sqrt ( 

(current_node.x - goal_node.x)2 + 

(current_node.y - goal_node.y)2)

• Each grid is 10 x 10

• Diagonal is ~14

F(x)

G H

Example



In ROS 
Navigation 



Graph <> Maps

• In the ROS Navigation stack, the graph represents

• Nodes/Vertices - Points on the static map

• Links/Edges - Possible paths between adjacent 

points.

• Numbers/Weights - Cost of travel through that 

path (calculated from the global costmap)

• By doing so, we can find a path from the start point to 

the navigation goal

E

B

C

D

61

1

5 5

2

2



Visualization
Dijkstra’s A*



For those interested

• The problem we have been going through and trying to solve is what 

is also known as “Single Source Shortest Paths (SSSP)” Problem.

• A great resource to learn and visualise different algorithms used to 

solve said problem and other concepts of graph theory (outside of 

scope of this course) can be found here.

https://visualgo.net/en/sssp?slide=1


Local Planners



Local Planners
● The aim of a local planner is to transforms the global path to suitable 

waypoints, while taking into consideration of dynamic obstacles and 

vehicle constraints.

● It results in velocity commands (geometry_msg/Twist aka /cmd_vel 

in move_base) that are sent to the robot to be performed.



Trajectory Rollout

● Uses trajectory propagation to generate candidate set of trajectories

● Among collision-free trajectories, choose trajectory that makes most 

progress to goal



Trajectory Set Generation

● Each trajectory corresponds to a fixed control input

○ uniformly sampled across a range of possible inputs

● In TrajectoryPlannerROS, this can be changed using the parameters 

under “Forward Simulation”

More sampled trajectories Less sampled trajectories

More maneuverability Improves computation time

http://wiki.ros.org/base_local_planner#Forward_Simulation_Parameters


Trajectory Propagation

● Generating “future states” along trajectories by propagating state 

forward using kinematic model of robot

● Take into account the following variables:

○ proximity to

■ obstacles

■ goal

■ global path

○ speed of robot



Selecting Trajectory

Trying to stay within path Steering from path and attempting to reach goal Changing path and trying 

to stay within new path

Original Path

Recap from last week



Selecting Trajectory

● The trajectory that is selected for execution usually 

○ deviates the least from global path

■ can be tuned by modifying the cost function (like the one in 

the previous slide).

○ collision-free (static and dynamic obstacles)

■ checked by comparing to perception and static maps.



Example

Static obstacle

• Set of goals being planned to, 

with resulting path shown in red

Chosen path



Example

• Trajectories generated by local 

planner to track this path

Deviates less from chosen

path

Collision-free


